Respuesta :

ANSWER

[tex]f(x) = 14x - 5[/tex]

EXPLANATION

The given expression is

[tex]( \frac{1}{32})^{x} \times ( \frac{1}{2})^{9x - 5} = ( \frac{1}{2} ) ^{f(x)} [/tex]

We rewrite the left hand side using the laws of indices.

[tex]( \frac{1}{2})^{5x} \times ( \frac{1}{2})^{9x - 5} = ( \frac{1}{2} ) ^{f(x)} [/tex]

The bases are now the same on the LHS.

We write one base and add the exponents

[tex] ( \frac{1}{2})^{5x + 9x - 5} = ( \frac{1}{2} ) ^{f(x)} [/tex]

[tex] ( \frac{1}{2})^{14x- 5} = ( \frac{1}{2} ) ^{f(x)} [/tex]

Since the bases are equal, the exponents are also equal:

[tex]f(x) = 14x - 5[/tex]