Respuesta :

Answer:

[tex]a=-4[/tex]

Step-by-step explanation:

The given expression is;

[tex](\frac{1}{9})^{a+1}=81^{a+1}\times27^{2-a}[/tex]

[tex](3)^{-2(a+1)}=3^{4(a+1)}\times3^{3(2-a)}[/tex]

[tex]3^{-2(a+1)}=3^{4(a+1)+3(2-a)}}[/tex]

Equate the exponent;

[tex]-2(a+1)=4(a+1)+3(2-a)[/tex]

[tex]-2a-2=4a+4+6-3a[/tex]

[tex]-2-4-6=4a-3a+2a[/tex]

[tex]-12=3a[/tex]

[tex]a=-4[/tex]

Answer:

Choice A is the answer.

Step-by-step explanation:

We have given a equation.

[tex](1/9)^{a+1}=81^{a+1}.27^{2-a}[/tex]

We have to find the value of a.

[tex](1/3)^{2a+2}=3^{4a+4}.3^{6-3a}[/tex]

[tex]3^{-2a-2}=3^{4a+4+6-3a}[/tex]

[tex]3^{-2a-2} =3^{a+10}[/tex]

By equating powers, we have

-2a-2 = a+10

a+2a =-2-10

3a = -12

a = -4 which is the answer.