What’s the answer to this question below. A b c or d

Answer:
[tex]a=-4[/tex]
Step-by-step explanation:
The given expression is;
[tex](\frac{1}{9})^{a+1}=81^{a+1}\times27^{2-a}[/tex]
[tex](3)^{-2(a+1)}=3^{4(a+1)}\times3^{3(2-a)}[/tex]
[tex]3^{-2(a+1)}=3^{4(a+1)+3(2-a)}}[/tex]
Equate the exponent;
[tex]-2(a+1)=4(a+1)+3(2-a)[/tex]
[tex]-2a-2=4a+4+6-3a[/tex]
[tex]-2-4-6=4a-3a+2a[/tex]
[tex]-12=3a[/tex]
[tex]a=-4[/tex]
Answer:
Choice A is the answer.
Step-by-step explanation:
We have given a equation.
[tex](1/9)^{a+1}=81^{a+1}.27^{2-a}[/tex]
We have to find the value of a.
[tex](1/3)^{2a+2}=3^{4a+4}.3^{6-3a}[/tex]
[tex]3^{-2a-2}=3^{4a+4+6-3a}[/tex]
[tex]3^{-2a-2} =3^{a+10}[/tex]
By equating powers, we have
-2a-2 = a+10
a+2a =-2-10
3a = -12
a = -4 which is the answer.