Respuesta :

i) The given function is

[tex]f(x)=\frac{2x-1}{x^2-x-6}[/tex]

We factor to obtain

[tex]f(x)=\frac{2x-1}{(x-3)(x+2)}[/tex]

The domain is

[tex](x-3)(x+2)\ne0[/tex]

[tex](x-3)\ne0,(x+2)\ne0[/tex]

[tex]x\ne3,x\ne-2[/tex]

ii) The vertical asymptotes are

[tex](x-3)(x+2)=0[/tex]

[tex](x-3)=0,(x+2)=0[/tex]

[tex]x=3,x=-2[/tex]

iii) To find the root, we equate the numerator to zero.

[tex]2x-1=0[/tex]

[tex]x=\frac{1}{2}[/tex]

iv) To find the y-intercept, put x=0 into the function.

[tex]f(0)=\frac{2(0)-1}{(0)^2-(0)-6}[/tex]

[tex]f(0)=\frac{-1}{-6}[/tex]

[tex]f(0)=\frac{1}{6}[/tex]

vi) To find the horizontal asymptote, we take limit to infinity.

This implies that;

[tex]lim_{x\to \infty}\frac{2x-1}{x^2-x-6}=0[/tex]

The horizontal asymptote is y=0.

vii) The numerator and the denominator do not have common factors that are at least linear.

Therefore the function has no holes in it.

Ver imagen kudzordzifrancis