Respuesta :

[tex]Answer: \\ 4 {(x + 2)}^{2} < 0 \\ \Leftrightarrow ( {x + 2})^{2} < 0 \: which \: is \: wrong \: because \: {(x + 2)}^{2} \geqslant 0 \\ \Rightarrow x \in \emptyset[/tex]

Answer:

Solution set of the quadratic inequality is { x : x ∈ R and x < -2 }

Step-by-step explanation:

Given Quadratic inequality ,

[tex]4(x+2)^2<0[/tex]

We have to find solution set of the given quadratic inequality.

consider,

[tex]4(x+2)^2<0[/tex]

transpose 4 to RHS

[tex](x+2)^2<\frac{0}{4}[/tex]

[tex](x+2)^2<0[/tex]

Square root both side,

[tex]\sqrt{(x+2)^2}<\sqrt{0}[/tex]

[tex]x+2<0[/tex]

transpose 2 to RHS

[tex]x<0-2[/tex]

x < -2

Solution set of the quadratic inequality = { x : x ∈ R and x < -2 }

Therefore, Solution set of the quadratic inequality is { x : x ∈ R and x < -2 }