Respuesta :
[tex]Answer: \\ 4 {(x + 2)}^{2} < 0 \\ \Leftrightarrow ( {x + 2})^{2} < 0 \: which \: is \: wrong \: because \: {(x + 2)}^{2} \geqslant 0 \\ \Rightarrow x \in \emptyset[/tex]
Answer:
Solution set of the quadratic inequality is { x : x ∈ R and x < -2 }
Step-by-step explanation:
Given Quadratic inequality ,
[tex]4(x+2)^2<0[/tex]
We have to find solution set of the given quadratic inequality.
consider,
[tex]4(x+2)^2<0[/tex]
transpose 4 to RHS
[tex](x+2)^2<\frac{0}{4}[/tex]
[tex](x+2)^2<0[/tex]
Square root both side,
[tex]\sqrt{(x+2)^2}<\sqrt{0}[/tex]
[tex]x+2<0[/tex]
transpose 2 to RHS
[tex]x<0-2[/tex]
x < -2
Solution set of the quadratic inequality = { x : x ∈ R and x < -2 }
Therefore, Solution set of the quadratic inequality is { x : x ∈ R and x < -2 }