Respuesta :
Expand the left side:
[tex](\tan x+\sec x)^2=\tan^2x+2\tan x\sec x+\sec^2x[/tex]
The Pythagorean identity tells us
[tex]\tan^2x+1=\sec^2x[/tex]
so we get
[tex](\tan x+\sec x)^2=(\sec^2x-1)+2\tan x\sec x+\sec^2x=2\sec^2x+2\tan x\sec x-1[/tex]
as needed.
Answer:
(tan(x)+sec(x))²= 2sec²(x)+2tan(x)sec(x)-1.
Step-by-step explanation:
We have given a trigonometric equation:
(tan(x)+sec(x))²=2sec²x+2tansec(x)-1
We have to prove this.
Taking L.H.S we get,
(tan(x)+sec(x))²= tan²(x)+sec²(x)+2tan(x)sec(x)
Sine we know that :
1+tan²(x) = sec²(x)
Putting in above equation we get,
(tan(x)+sec(x))²= (sec²(x)-1)+sec²(x)+2tan(x)sec(x)
(tan(x)+sec(x))² = 2sec²(x)-1+2tan(x)sec(x)
(tan(x)+sec(x))²= 2sec²(x)+2tan(x)sec(x)-1 = R.H.S
Hence, proved.