Respuesta :

Answer:

The product of [tex](7x^{2}y^{3})(3x^{5}y^{8})[/tex] is [tex]=21x^{7}y^{11}[/tex]

Step-by-step explanation:

We need to find product of expression : [tex](7x^{2}y^{3})(3x^{5}y^{8})[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^{b+c}[/tex]

[tex]=7y^3\cdot \:3x^{2+5}y^8[/tex]

[tex]=7y^3\cdot \:3x^7y^8[/tex]

[tex]=7\cdot \:3x^7y^{3+8}[/tex]

[tex]=7\cdot \:3x^7y^{11}[/tex]

[tex]\mathrm{Multiply\:the\:numbers:}\:7\cdot \:3=21[/tex]

[tex]=21x^7y^{11}[/tex]

Therefore, the product of [tex](7x^{2}y^3)(3x^{5}y^{8})[/tex] is [tex]=21x^{7}y^{11}[/tex]

Answer:the answer is c

Step-by-step explanation: