In the diagram shown, chords AB and CD intersect at E. The measure of (AC) ̂ is 134°, the measure of (DB) ̂ is (3x)° and the measure of ∠AEC is (7x)°. What is the degree measure of ∠ AED?

Answer:
The measure of angle AED is [tex]94\frac{8}{11}\°[/tex]
Step-by-step explanation:
step 1
Find the measure of x
we know that
The measure of the interior angle is the semi-sum of the arcs comprising it and its opposite
In this problem
m<AEC is a interior angle
so
[tex]m<AEC=\frac{1}{2}(arc\ AC+arc\ DB)[/tex]
substitute the values and solve for x
[tex]7x\°=\frac{1}{2}(134\°+3x\°)[/tex]
[tex]14x\°=(134\°+3x\°)[/tex]
[tex]14x\°-3x\°=134\°[/tex]
[tex]11x\°=134\°[/tex]
[tex]x=(134/11)\°[/tex]
step 2
Find the measure of angle AED
we know that
[tex]m<AEC+m<AED=180\°[/tex] -----> by supplementary angles
[tex]m<AED=180\°-m<AEC[/tex]
[tex]m<AED=180\°-7x[/tex]
[tex]m<AED=180\°-7(134/11)\°[/tex]
[tex]m<AED=180\°-(938/11)\°[/tex]
[tex]m<AED=(1,042/11)\°[/tex]
Convert to mixed number
[tex](1,042/11)\°=(1,034/11)\°+(8/11)\°=94\°+(8/11)\°=94\frac{8}{11}\°[/tex]