[tex]f(x) = \frac{3(x-1)(x+1)}{(x-3)(x+3)}[/tex]

Domain:
V.A:
Roots:
Y-int:
H.A:
Holes:
O.A:

Also, draw on the graph attached.

texfx frac3x1x1x3x3tex Domain VA Roots Yint HA Holes OA Also draw on the graph attached class=

Respuesta :

QUESTION 1

i) The given function is

[tex]f(x)=\frac{3(x-1)(x+1)}{(x-3)(x+3)}[/tex]

The domain is

[tex](x-3)(x+3)\ne0[/tex]

[tex](x-3)\ne0,(x+3)\ne0[/tex]

[tex]x\ne3,x\ne-3[/tex]

ii) To find the vertical asymptote equate the denminator to zero.

[tex](x-3)(x+3)\=0[/tex]

[tex](x-3)=0,(x+3)=0[/tex]

[tex]x=3,x=-3[/tex]

iii) To find the roots equate the numerator zero.

[tex]3(x-1)(x+1)=0[/tex]

[tex]3(x-1)=0,(x+1)=0[/tex]

[tex](x-1)=0, (x+1)=0[/tex]

[tex]x=1, x=-1[/tex]

iv) To find the y-intercept substitute [tex]x=0[/tex] into the function;

[tex]f(0)=\frac{3(0-1)(0+1)}{(0-3)(0+3)}[/tex]

[tex]f(0)=\frac{-3}{(-3)(3)}[/tex]

[tex]f(0)=\frac{1}{3}[/tex]

The y-intercept is [tex]\frac{1}{3}[/tex]

v) The horizontal asymptote is given by

[tex]lim_{x\to \infty}\frac{3(x-1)(x+1)}{(x-3)(x+3)}=3[/tex]

The horizontal asymptote is y=3

vi) The rational function has no common linear factor.

This rational function has no holes.

vii) This rational function is a proper function. It has no oblique asymptote.

Ver imagen kudzordzifrancis