[tex]f(x) = \frac{(2x+1)(x-5)}{(x-5)(x+4)^{2} }[/tex]

Domain:
V.A:
Roots:
Y-int:
H.A:
Holes:
O.A:

Also, draw on the graph attached.

texfx frac2x1x5x5x42 tex Domain VA Roots Yint HA Holes OA Also draw on the graph attached class=

Respuesta :

i) The given function is

[tex]f(x)=\frac{(2x+1)(x-5)}{(x-5)(x+4)^2}[/tex]

The domain is

[tex](x-5)(x+4)^2\ne 0[/tex]

[tex](x-5)\ne0,(x+4)^2\ne 0[/tex]

[tex]x\ne5,x\ne -4[/tex]

ii) For vertical asymptotes, we simplify the function to get;

[tex]f(x)=\frac{(2x+1)}{(x+4)^2}[/tex]

The vertical asymptote occurs at

[tex](x+4)^2=0[/tex]

[tex]x=-4[/tex]

iii) The roots are the x-intercepts of the reduced fraction.

Equate the numerator of the reduced fraction to zero.

[tex]2x+1=0[/tex]

[tex]2x=-1[/tex]

[tex]x=-\frac{1}{2}[/tex]

iv) To find the y-intercept, we substitute [tex]x=0[/tex] into the reduced fraction.

[tex]f(0)=\frac{(2(0)+1)}{(0+4)^2}[/tex]

[tex]f(0)=\frac{(1)}{(4)^2}[/tex]

[tex]f(0)=\frac{1}{16}[/tex]

v) The horizontal asymptote is given by;

[tex]lim_{x\to \infty}\frac{(2x+1)}{(x+4)^2}=0[/tex]

The horizontal asymptote is [tex]y=0[/tex].

vi) The function has a hole at [tex]x-5=0[/tex].

Thus at [tex]x=5[/tex].

This is the factor common to both the numerator and the denominator.

vii) The function is a proper rational function.

Proper rational functions do not have oblique asymptotes.

Ver imagen kudzordzifrancis