Respuesta :

[tex]\bold{Answer}[/tex]

[tex]\boxed{\bold{X \ = \ -1, \ X \ = \ \frac{3}{5} }}[/tex]

[tex]\bold{Explanation}[/tex]

  • [tex]\bold{Find \ Two \ Values \ Of \ X: \ 2x-3=-5x^2}[/tex]

[tex]\bold{-------------------}[/tex]

  • [tex]\bold{Switch \ Sides}[/tex]

[tex]\bold{-5x^2=2x-3}[/tex]

  • [tex]\bold{Add \ 3 \ To \ Both \ Sides}[/tex]

[tex]\bold{-5x^2+3=2x-3+3}[/tex]

  • [tex]\bold{Simplify}[/tex]

[tex]\bold{-5x^2+3=2x}[/tex]

  • [tex]\bold{Subtract \ 2x \ From \ Both \ Sides}[/tex]

[tex]\bold{-5x^2+3-2x=2x-2x}[/tex]

  • [tex]\bold{Simplify}[/tex]

[tex]\bold{-5x^2-2x+3=0}[/tex]

  • [tex]\bold{Solve \ With \ The \ Quadratic \ Formula}[/tex]
  • [tex]\bold{For \ The \ Quadratic \ Form \ For \ ax^2+bx+c=0 \ The \ Solutions \ Are \ x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}}[/tex]
  • [tex]\bold{For \ A \ =-5,\:b=-2,\:c=3:\quad x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\left(-5\right)3}}{2\left(-5\right)}}[/tex]

[tex]\bold{\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\left(-5\right)\cdot \:3}}{2\left(-5\right)}: \ -1}[/tex]

[tex]\bold{\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\left(-5\right)\cdot \:3}}{2\left(-5\right)}: \ \frac{3}{5} }[/tex]

  • [tex]\bold{Solutions}[/tex]

[tex]\bold{x=-1,\:x=\frac{3}{5}}[/tex]

[tex]\boxed{\bold{Eclipsed}}[/tex]

Answer:

x=3/5 and x=-1

Step-by-step explanation:

a p e x