This ODE is separable; we have
[tex]\dfrac{\mathrm dy}{\mathrm dt}=ky\implies\dfrac{\mathrm dy}y=k\,\mathrm dt[/tex]
Integrating both sides gives a general solution of
[tex]\ln|y|=kt+C\implies y=e^{kt+C}=Ce^{kt}[/tex]
B is the only choice that is applicable.