Respuesta :

frika

Answer:

1. [tex]x\in (-\infty, -1)\cup (-1,\infty)[/tex]

2. [tex]x=-1[/tex]

3. [tex]x=\dfrac{1}{2}[/tex]

4. [tex](0,-1)[/tex]

5. [tex]y=2[/tex]

6. There are no holes for this function.

7. There are no oblique asymptotes.

Step-by-step explanation:

Consider the function [tex]y=2-\dfrac{3}{x+1}.[/tex] The denominator of the fraction includes the expression [tex]x+1.[/tex] Since the denominator cannot be equal to 0, then

[tex]x+1\neq 0,\\ \\x\neq -1.[/tex]

Thus, the range is [tex]x\in (-\infty, -1)\cup (-1,\infty)[/tex]

and line [tex]x=-1[/tex] is a vertical asymptote.

The roots of the function are:

[tex]f(x)=0\Rightarrow 2-\dfrac{3}{x+1}=0,\\ \\\dfrac{2x+2-3}{x+1}=0\Rightarrow 2x+2-3=0,\\ \\2x-1=0,\\ \\\2x=1,\\ \\x=\dfrac{1}{2}.[/tex]

When [tex]x=0,[/tex] [tex]f(0)=2-\dfrac{3}{0+1},\\ \\f(0)=2-3=-1.[/tex]

Point (0,-1) is y-intercept.

The line [tex]y=2[/tex] is a horizontal asymptote.

There are no holes for this function.

There are no oblique asymptotes.

Ver imagen frika