i) The given function is
[tex]f(x)=\frac{x-5}{2x^2-5x-3}[/tex]
The factored form is
[tex]f(x)=\frac{x-5}{(x-3)(2x+1)}[/tex]
The domain are the values of x for which the function is defined.
[tex](x-3)(2x+1)\ne 0[/tex]
[tex](x-3)\ne0,(2x+1)\ne 0[/tex]
[tex]x\ne3,x\ne-\frac{1}{2}[/tex]
ii) To find the vertical asymptotes, equate the denominator to zero.
[tex](x-3)(2x+1)=0[/tex]
[tex](x-3)=\ne0,(2x+1)=0[/tex]
[tex]x=3,x=-\frac{1}{2}[/tex]
iii) To find the roots, equate the numerator to zero.
[tex]x-5=0[/tex]
The root is [tex]x=5[/tex]
iv) To find the y-intercept, put [tex]x=0[/tex] into the function.
[tex]f(0)=\frac{0-5}{(0-3)(2(0)+1)}[/tex]
[tex]f(0)=\frac{-5}{(-3)(1)}[/tex]
[tex]f(0)=\frac{5}{3}[/tex]
The y-intercept is [tex]\frac{5}{3}[/tex]
v) The horizontal asymptote is given by;
[tex]lim_{x\to \infty}\frac{x-5}{2x^2-5x-3}=0[/tex]
The horizontal asymptote is [tex]y=0[/tex]
vi) The function is not reducible. There are no holes.
vii) The given function is a proper rational function.
Proper rational functions do not have oblique asymptotes.