Respuesta :
Answer:
B. [tex]P(Above\ Average|Boy)=P(Above\ Average)[/tex]
Step-by-step explanation:
We know that,
The conditional probability of event A, given event B is P(A|B), where,
[tex]P(A|B)=\dfrac{P(A\bigcap B)}{P(B)}[/tex].
Using the formula, we have,
[tex]P(Boy|Above\ Average)=\dfrac{P(Boy\bigcap Above\ Average)}{P(Above\ Average)}\\\\P(Boy|Above\ Average)=\dfrac{23}{45}\\\\P(Boy|Above\ Average)=0.51[/tex]
And, we have,
[tex]P(Above\ Average|Boy)=\dfrac{P(Above\ Average\bigcap Boy)}{P(Boy)}\\\\P(Above\ Average|Boy)=\dfrac{23}{37}\\\\P(Above\ Average|Boy)=0.6[/tex]
Since, the other probabilities are given by,
[tex]P(Boy)=\dfrac{37}{75}=0.49[/tex]
[tex]P(Above\ Average)=\dfrac{45}{75}=0.6[/tex]
So, we get that the correct option is,
B. [tex]P(Above\ Average|Boy)=P(Above\ Average)=0.6[/tex]