New temperature:
By Charles's Law,
[tex]V \propto T[/tex],
where
In other words,
[tex]\dfrac{V_2}{V_1} = \dfrac{T_2}{T_1}[/tex],
[tex]T_2 = T_1\cdot\dfrac{V_2}{V_1}[/tex]
[tex]T_1 = 21.0\;\textdegree{}\text{C}=(21.0 + 273.15)\;\text{K}[/tex].
[tex]T_2 =T_1\cdot\dfrac{V_2}{V_1} = (21.0 + 273.15)\;\text{K}\times\dfrac{5.70\;\text{L}}{1.90\;\text{L}}=882.45\;\text{K}[/tex].
[tex]882.45\;\text{K} = (882.45 - 273.15)\;\textdegree{}\text{C}=609.3\;\textdegree{}\text{C}[/tex].