Respuesta :

[tex]( \frac{f}{g} )(x) = \frac{4 {x}^{2} + 19x - 5}{4 {x}^{2} - x} = \frac{(4x - 1)(x + 5)}{x(4x - 1)} = \frac{x + 5}{x} [/tex]

The value of (f/g)(x) is  [tex]\frac{x+5}{x}[/tex]

we have given that the function

[tex]f(x) = 4x^2 + 19x - 5[/tex] and [tex]g(x) = 4x^2 - x[/tex]

We have to find [tex](f/g)(x)[/tex]

What is the simplified form of [tex](f/g)(x)[/tex]?

[tex]\frac{f}{g}(x)=\frac{f(x)}{g(x)}[/tex]

[tex]\frac{f}{g}(x) =\frac{ 4x^2 + 19x - 5}{ 4x^2 - x}\\\\\frac{f}{g}(x) =\frac{(4x-1)(x+5)}{x(4x-1)} \\\\\frac{f}{g}(x) =\frac{x+5}{x}[/tex]

Therefore the value of (f/g)(x) is  [tex]\frac{x+5}{x}[/tex]

To learn more about the division of function visit:

https://brainly.com/question/917110