Respuesta :

the answer to the question
Ver imagen meredith48034

Answer:

[tex]x = 1+ i\sqrt{19},1- i\sqrt{19}[/tex]

Step-by-step explanation:

Given : [tex]x^2+20=2x[/tex]

To Find: using the quadratic formula find x'

Solution:

Quadratic equation : [tex]ax^2+bx+c=0[/tex]  ---1

Quadratic Formula : [tex]x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

We are given :  [tex]x^2+20=2x[/tex]

[tex]x^2-2x+20=0[/tex]

On comparing with 1

a = 1

b = -2

c = 20

Substitute the values in the formula .

[tex]x = \frac{-(-2)\pm\sqrt{(-2)^2-4(1)(20)}}{2(1)}[/tex]

[tex]x = \frac{2\pm\sqrt{4-80}}{2}[/tex]

[tex]x = \frac{2\pm\sqrt{-76}}{2}[/tex]

[tex]x = \frac{2\pm\sqrt{i^2 (2)(2)(19)}}{2}[/tex]

[tex]x = \frac{2\pm 2i\sqrt{19}}{2}[/tex]

[tex]x = 1\pm i\sqrt{19}[/tex]

[tex]x = 1+ i\sqrt{19},1- i\sqrt{19}[/tex]

Hence The values of x are  [tex]x = 1+ i\sqrt{19},1- i\sqrt{19}[/tex]