Respuesta :

-2 • (2x4 - 15x3 - 54x2 + 4x + 21)

 ——————————————————————————————————

                 x2                

Step by step solution :

Step  1  :

            2

Simplify   ——

           x2

Equation at the end of step  1  :

      18                   2

 (6x-————)-((4•(x+3))•((x+——)-9))

     (x2)                 x2

Step  2  :

Rewriting the whole as an Equivalent Fraction :

2.1   Adding a fraction to a whole  

Rewrite the whole as a fraction using  x2  as the denominator :

         x     x • x2

    x =  —  =  ——————

         1       x2  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole  

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

2.2       Adding up the two equivalent fractions  

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x • x2 + 2     x3 + 2

——————————  =  ——————

    x2           x2  

Equation at the end of step  2  :

      18               (x3+2)

 (6x-————)-((4•(x+3))•(——————-9))

     (x2)                x2  

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Subtracting a whole from a fraction  

Rewrite the whole as a fraction using  x2  as the denominator :

        9     9 • x2

   9 =  —  =  ——————

        1       x2  

Trying to factor as a Sum of Cubes :

3.2      Factoring:  x3 + 2  

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :

            (a+b) • (a2-ab+b2)

Proof  : (a+b) • (a2-ab+b2) =  

   a3-a2b+ab2+ba2-b2a+b3 =

   a3+(a2b-ba2)+(ab2-b2a)+b3=

   a3+0+0+b3=

   a3+b3

Check :  2  is not a cube !!  

Ruling : Binomial can not be factored as the difference of two perfect cubes

3.3    Find roots (zeroes) of :       F(x) = x3 + 2

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  2.  

The factor(s) are:  

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2  

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        1.00      

     -2       1        -2.00        -6.00      

     1       1        1.00        3.00      

     2       1        2.00        10.00      

Adding fractions that have a common denominator :

3.4       Adding up the two equivalent fractions  

(x3+2) - (9 • x2)     x3 - 9x2 + 2

—————————————————  =  ————————————

       x2                  x2      

Equation at the end of step  3  :

      18              (x3-9x2+2)

 (6x-————)-((4•(x+3))•——————————)

     (x2)                 x2    

Step  4  :

Equation at the end of step  4  :

      18            (x3-9x2+2)

 (6x-————)-(4•(x+3)•——————————)

     (x2)               x2    

Step  5  :

5.1    Find roots (zeroes) of :       F(x) = x3-9x2+2

    See theory in step 3.3  

In this case, the Leading Coefficient is  1  and the Trailing Constant is  2.  

The factor(s) are:  

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2  

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -8.00      

     -2       1        -2.00        -42.00      

     1       1        1.00        -6.00      

     2       1        2.00        -26.00      

Equation at the end of step  5  :

      18   4•(x+3)•(x3-9x2+2)

 (6x-————)-——————————————————

     (x2)          x2        

Step  6  :

           18

Simplify   ——

           x2

Equation at the end of step  6  :

        18     4 • (x + 3) • (x3 - 9x2 + 2)

 (6x -  ——) -  ————————————————————————————

        x2                  x2              

Step  7  :

Rewriting the whole as an Equivalent Fraction :

7.1   Subtracting a fraction from a whole  

Rewrite the whole as a fraction using  x2  as the denominator :

          6x     6x • x2

    6x =  ——  =  ———————

          1        x2    

Adding fractions that have a common denominator :

7.2       Adding up the two equivalent fractions  

6x • x2 - (18)     6x3 - 18

——————————————  =  ————————

      x2              x2    

Equation at the end of step  7  :

 (6x3 - 18)    4 • (x + 3) • (x3 - 9x2 + 2)

 —————————— -  ————————————————————————————

     x2                     x2              

Step  8  :

Step  9  :

Pulling out like terms :

9.1     Pull out like factors :

  6x3 - 18  =   6 • (x3 - 3)  

Trying to factor as a Difference of Cubes:

9.2      Factoring:  x3 - 3  

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into

             (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =

           a3+a2b+ab2-ba2-b2a-b3 =

           a3+(a2b-ba2)+(ab2-b2a)-b3 =

           a3+0+0+b3 =

           a3+b3

Check :  3  is not a cube !!  

9.3    Find roots (zeroes) of :       F(x) = x3 - 3

    See theory in step 3.3  

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -3.  

The factor(s) are:  

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,3  

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -4.00      

     -3       1        -3.00        -30.00      

     1       1        1.00        -2.00      

     3       1        3.00        24.00      

Adding fractions which have a common denominator :

9.4       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

6 • (x3-3) - (4 • (x+3) • (x3-9x2+2))     -4x4 + 30x3 + 108x2 - 8x - 42

—————————————————————————————————————  =  —————————————————————————————

                 x2                                    x2              

Step  10  :

Pulling out like terms :

10.1     Pull out like factors :

  -4x4 + 30x3 + 108x2 - 8x - 42  =  

 -2 • (2x4 - 15x3 - 54x2 + 4x + 21)