Respuesta :
Answer:
\left(ax^2\right)\left(-6x^b\right)=12x^5\\\\(-6a)x^{2+b}=12x^5\to -6a=12\ and\ 2+b=5\\\\-6a=12\ \ \ |:(-6)\\a=-2\\\\2+b=5\ \ \ |-2\\b=3
Answer:\ a=-2;\ b=3
Step-by-step explanation:
Answer:
a = - 2 and b = 3
Step-by-step explanation:
Expand the left side and compare relevant values to the right side
(ax²)(-6[tex]x^{b}[/tex]) = - 6a[tex]x^{2+b}[/tex]
For the 2 sides to equate then
- 6a = 12 ⇒ a = - 2 and
2 + b = 5 ⇒ b = 5 - 2 = 3