Respuesta :

Answer:

The volume of the figure is equal to

[tex]\frac{1,225}{3}\pi\ ft^{3}[/tex]  or  [tex]408\frac{1}{3}\pi\ ft^{3}[/tex]

Step-by-step explanation:

we know that

The volume of the composite figure is equal to the volume of a cone plus the volume of a cylinder

step 1

Fin the volume of a cone

The volume of a cone is equal to

[tex]V=\frac{1}{3}\pi r^{2}H[/tex]

we have

[tex]r=7\ ft[/tex]

[tex]H=7\ ft[/tex]

substitute

[tex]V=\frac{1}{3}\pi (7^{2})(7)=\frac{343}{3}\pi\ ft^{3}[/tex]

step 2

Find the volume of the cylinder

The volume of the cylinder is equal to

[tex]V=\pi r^{2}h[/tex]

we have

[tex]r=7\ ft[/tex]

[tex]h=6\ ft[/tex]

substitute

[tex]V=\pi (7^{2})(6)=294 \pi\ ft^{3}[/tex]

step 3

Find the volume of the figure

[tex]\frac{343}{3}\pi\ ft^{3}+294 \pi\ ft^{3}=\frac{1,225}{3}\pi\ ft^{3}[/tex]

Convert to mixed number

[tex]\frac{1,225}{3}\pi=\pi(\frac{1,224}{3}+\frac{1}{3})=408\frac{1}{3}\pi\ ft^{3}[/tex]