Respuesta :

Answer:

Step-by-step explanation:

What are the vertex and x-intercepts of the graph of y=x^2-2x-24

Direction: Opens Up

Vertex:

(1,−25)

Focus:

(1,−994)

Axis of Symmetry:

x=1

Directrix:

y=−101/4

 x       y

−1     −21

0     −24

1      −25

2     −24

3     −21

Ver imagen Anonymouslizard

Answer:

Vertex : (1,-25) ; x intercepts : (6,0)&(-4,0)

Step-by-step explanation:

[tex]y=x^{2}-2x-24[/tex]

adding 25 on both sides

[tex]y+25=x^{2}-2x-24+25[/tex]

[tex]y+25=x^{2}-2x+1[/tex]

[tex]y+25=x^{2}-2*1*1*x+1^{2}[/tex]

[tex]y+25=(x-1)^{2}[/tex]

let us convert the above equation in the standard form

let y+25=Y

    x-1=X

[tex]X^{2}=4*\frac{1}{4}*Y[/tex]

vertex of above equation is (0,0)

replacing them into original form is x-1=0 , x=1

y+25=0 ; y=-25

Hence the vertex is (1,-25)

Part 2 :

In order to find the x intercepts , we put y=0 and solve for x

[tex]0+25=(x-1)^{2}[/tex]

[tex]25=(x-1)^{2}[/tex]

taking square roots on both sides we get

±5=x-1

solving   get x=±5+1 ; x=5+1=6 ; x=-5+1=-4

Hence y intercepts are (-4,0) & (6,0)