Respuesta :

gmany

Answer:

[tex]\large\boxed{y=\dfrac{5}{4}x+7}[/tex]

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

We have

[tex]y=-\dfrac{4}{5}x+3\to m_1=-\dfrac{4}{5}[/tex]

If [tex]k:y=m_1x+b_1[/tex] and [tex]l:y=m_2x+b_2[/tex], then

[tex]l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}[/tex]

Calculate the slope:

[tex]m_2=-\dfrac{1}{-\frac{4}{5}}=\dfrac{5}{4}[/tex]

Therefore e have the equation of a line:

[tex]y=\dfrac{5}{4}x+b[/tex]

The line passes through the point (4, 12). Put the coordinates of the point to the equation of a line:

[tex]12=\dfrac{5}{4}(4)+b[/tex]

[tex]12=5+b[/tex]             subtract 5 from both sides

[tex]7=b\to b=7[/tex]

Finally:

[tex]y=\dfrac{5}{4}x+7[/tex]