Respuesta :

Answer:

The answer is the last one

[tex]tan(x_{1}+x_{2}+x_{3})=\frac{tanx_{1}+tan(x_{2}+x_{3})}{1-tanx_{1}tan(x_{2}+x_{3})}[/tex]

Step-by-step explanation:

∵ [tex]tan(x_{1}+x_{2}+x_{3}=\frac{tanx_{1}+tan(x_{2}+x_{3})}{1-tanx_{1}tan(x_{2}+x_{3})}[/tex]

[tex]=\frac{tanx_{1}+\frac{tanx_{2}+tanx_{3}}{1-tanx_{2}tanx_{3}}  }{1-tanx_{1}(\frac{tanx_{2}+tanx_{3}}{1-tanx_{2}tanx_{3}})}[/tex]

Multiply up and down by [tex]1-tanx_{2}tanx_{3}[/tex]

[tex]\frac{tanx_{1}(1-tanx_{2}tanx_{3})+tanx_{2}+tanx_{3}}{1-tanx_{2}tanx_{3}-tanx_{1}tanx_{2}-tanx_{1}tanx_{3}}[/tex]

[tex]=\frac{tanx_{1}+tanx_{2}+tanx_{3}-tanx_{1}tanx_{2}tanx_{3}}{1-tanx_{1}tanx_{2}-tanx_{2}tanx_{3}-tanx_{1}tanx_{3}}[/tex]

Answer:

1. B, E

2. B, E

3. B

4. B

5. D

6. A

7. D

8. A

9. B

10. B

11. A

Step-by-step explanation: