Respuesta :
Answer:
The GCF of the group (14x2 - 7x) is 7x. The GCF of the group (6x - 3) is 3. The common binomial factor is 2x-1. The factored expression is (7x+3)(2x-1)
Step-by-step explanation:
i don't know but this is the right answer
The given quadratic equation [tex]14x^2+6x-7x-3[/tex] has factors (7x+3) and (2x-1) and this can be determined by factorizing the given quadratic equation.
Given :
Equation - [tex]14x^2+6x-7x-3[/tex]
The GCF of the group [tex](14x^2-7x)[/tex] will be:
[tex]= 14x^2-7x[/tex]
[tex]= 7x(2x-1)[/tex]
The GCF of the group (6x – 3) will be:
[tex]=6x-3[/tex]
[tex]=3(2x-1)[/tex]
The common binomial factor of the quadratic equation will be:
[tex]=14x^2+6x-7x-3[/tex]
[tex]= 14x^2-x-3[/tex]
[tex]=14x^2-7x+6x -3[/tex]
[tex]=7x(2x-1)+3(2x-1)[/tex]
[tex]=(7x+3)(2x-1)[/tex]
The binomial factor of the above equation is (2x - 1).
The factored expression of the quadratic equation [tex]14x^2+6x-7x-3[/tex] will be:
[tex]= 14x^2-x-3[/tex]
[tex]=14x^2-7x+6x -3[/tex]
[tex]=7x(2x-1)+3(2x-1)[/tex]
[tex]=(7x+3)(2x-1)[/tex]
For more information, refer to the link given below:
https://brainly.com/question/21835898