Respuesta :

Answer:

Part 11) [tex]m<1=135\°[/tex], [tex]m<2=135\°[/tex], [tex]m<3=45\°[/tex]

Part 12) [tex]m<1=90\°[/tex], [tex]m<2=25\°[/tex]

Step-by-step explanation:

Part 11) we know that

Find the measure angle 3

The base angles of an isosceles trapezoid are equal in measure

so

[tex]m<3=45\°[/tex]

Find the measure of angle 1

[tex]m<1+45\°=180\°[/tex] -----> by supplementary angles

[tex]m<1=180\°-45\°=135\°[/tex]

Find the measure of angle 2

[tex]m<2+m<3=180\°[/tex] -----> by supplementary angles

[tex]m<2+45\°=180\°[/tex]

[tex]m<2=180\°-45\°=135\°[/tex]

Part 12) we know that

In a Kite the diagonals are perpendiculars

so

[tex]m<1=90\°[/tex]

and

[tex]m<2+65\°=90\°[/tex] ------> by complementary angles

[tex]m<2=90\°-65\°=25\°[/tex]