I have an interesting intergral that seems pretty challenging. After attempting to solve it for some time, I've come up empty handed. Can you solve this integral?

Indefinite Integral of:
[tex] {x}^{4} { {e}^{x} }^{3} [/tex]

Respuesta :

Space

Answer:

[tex]\displaystyle \int {x^4e^\big{x^3}} \, dx = \sum^{\infty}_{n = 0} \frac{x^{3n + 5}}{(3n + 5)n!} + C[/tex]

[tex]\displaystyle \int {x^4e^\big{x^3}} \, dx = \frac{\Gamma (\frac{5}{3}, \ -x^3)}{3} + C[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Property [Multiplied Constant]:                                                             [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

U-Substitution

Sequences

Series

Taylor Polynomials and Approximations

  • MacLaurin Polynomials
  • Taylor Polynomials

Power Series

  • Power Series of Elementary Functions
  • Taylor Series:                                                                                                       [tex]\displaystyle P(x) = \sum^{\infty}_{n = 0} \frac{f^n(c)}{n!}(x - c)^n[/tex]

Integration of Power Series:

  1.  [tex]\displaystyle f(x) = \sum^{\infty}_{n = 0} a_n(x - c)^n[/tex]
  2.  [tex]\displaystyle \int {f(x)} \, dx = \sum^{\infty}_{n = 0} \frac{a_n(x - c)^{n + 1}}{n + 1} + C_1[/tex]

Multivariable Calculus

Gamma Functions

  • [tex]\displaystyle \Gamma (s, x) = \int\limits^{\infty}_x {t^{s - 1}e^{-t}} \, dt[/tex]
  • Incomplete Gamma Functions

Step-by-step explanation:

*Note:

If we are talking single-variable calculus, then we would have to write this integral as a power series.

  • You can derive the power series for eˣ using Taylor Polynomials (not shown here)

If we are talking multi-variable calculus, then we could integrate this and get an "actual" value.

Single-variable Calculus

We are given the integral:

[tex]\displaystyle \int {x^4e^\big{x^3}} \, dx[/tex]

We know that the power series for  [tex]\displaystyle e^x[/tex]  is:

[tex]\displaystyle e^x = \sum^{\infty}_{n = 0} \frac{x^n}{n!}[/tex]

To find the power series for  [tex]\displaystyle e^\big{x^3}[/tex]  , substitute in x = x³:

[tex]\displaystyle e^\big{x^3} = \sum^{\infty}_{n = 0} \frac{(x^3)^n}{n!}[/tex]

Simplify it, we have:

[tex]\displaystyle e^\big{x^3} = \sum^{\infty}_{n = 0} \frac{x^{3n}}{n!}[/tex]

Rewrite the original function:

[tex]\displaystyle \int {x^4e^\big{x^3}} \, dx = \int {x^4 \sum^{\infty}_{n = 0} \frac{x^{3n}}{n!}} \, dx[/tex]

Rewrite the integrand by including the x⁴ in the power series:

[tex]\displaystyle \int {x^4e^\big{x^3}} \, dx = \int {\sum^{\infty}_{n = 0} \frac{x^{3n + 4}}{n!}} \, dx[/tex]

Integrating the power series, we have:

[tex]\displaystyle \int {x^4e^\big{x^3}} \, dx = \sum^{\infty}_{n = 0} \frac{x^{3n + 5}}{(3n + 5)n!} + C[/tex]

Multivariable Calculus

Let's set our variables for u-substitution:

u = x⁵ → du = 5x⁴ dx

Use u-substitution on the integral to obtain:

[tex]\displaystyle \int {x^4e^\big{x^3}} \, dx = \frac{1}{5}\int {e^\big{u^{\frac{3}{5}}}} \, dx[/tex]

We see that the integral is an incomplete gamma function:

[tex]\displaystyle \int {x^4e^\big{x^3}} \, dx = \frac{1}{5} \bigg[ \frac{5 \Gamma (\frac{5}{3}, \ -u^\big{\frac{3}{5}})}{3} \bigg] + C[/tex]

Simplifying it, we have:

[tex]\displaystyle \int {x^4e^\big{x^3}} \, dx = \frac{\Gamma (\frac{5}{3}, \ -u^\big{\frac{3}{5}})}{3} + C[/tex]

Back-substituting u will give us the final result:

[tex]\displaystyle \int {x^4e^\big{x^3}} \, dx = \frac{\Gamma (\frac{5}{3}, \ -x^3)}{3} + C[/tex]