Analyze the diagram below and complete the instructions that follow.
Find the value of x

Applying the trigonometry ratio SOH, the value of x in the diagram given is: B. [tex]\mathbf{\frac{3\sqrt{2} }{2} }[/tex]
Recall:
Thus, in the diagram shown, the triangle is a right-angled triangle having the following:
Apply the trigonometry ratio, SOH as follows:
[tex]sin(\theta) = \frac{Opp}{Hyp}[/tex]
[tex]sin(45) = \frac{x}{3}\\\\\frac{1}{\sqrt{2} } = \frac{x}{3}[/tex](sin 45 = [tex]\frac{1}{\sqrt{2} }[/tex])
[tex]\frac{1}{\sqrt{2} } \times 3 = \frac{x}{3} \times 3\\\\\frac{3}{\sqrt{2}} = x\\\\x = \frac{3}\sqrt{2}[/tex]
[tex]= \frac{3 \times \sqrt{2} }\sqrt{2} \times \sqrt{2}\\\\[/tex]
[tex]\mathbf{x = \frac{3\sqrt{2} }{2} }[/tex]
Therefore, applying the trigonometry ratio SOH, the value of x in the diagram given is: B. [tex]\mathbf{\frac{3\sqrt{2} }{2} }[/tex]
Learn more here:
https://brainly.com/question/11831029