Respuesta :
Answer:
This question requires us to change the subject of a formula. This can be achieved by following the order of operations in reverse. First, isolate the terms with our variable of interest, x:
ax - bx = z - y
Then, we take x out as it is being multiplied to both a and b:
x(a - b) = z - y
Dividing (a - b) on both sides, we get:
x = (z - y) / (a - b)
Thus, the answer is x= z-y/a-b
Step-by-step explanation:
[tex]\bold{Answer}[/tex]
[tex]\boxed{\bold{x=\frac{z-y}{A-b};\quad \:A\ne \:b}}[/tex]
[tex]\bold{Explanation}[/tex]
- [tex]\bold{Solve: \ Ax-bx+y=z}[/tex]
[tex]\bold{-------------------}[/tex]
- [tex]\bold{Subtract \ Y \ From \ Both \ Sides}[/tex]
[tex]\bold{Ax-bx+y-y=z-y}[/tex]
- [tex]\bold{Simplify}[/tex]
[tex]\bold{Ax-bx=z-y}[/tex]
- [tex]\bold{Factor \ Ax-bx: \ x\left(A-b\right)}[/tex]
[tex]\bold{x\left(A-b\right)=z-y}[/tex]
- [tex]\bold{Divide \ Both \ Sides \ By \ A-b;\quad \:A\ne \:b}[/tex]
[tex]\bold{\frac{x\left(A-b\right)}{A-b}=\frac{z}{A-b}-\frac{y}{A-b};\quad \:A\ne \:b}[/tex]
- [tex]\bold{Simplify}[/tex]
[tex]\bold{\frac{x\left(A-b\right)}{A-b}=\frac{z}{A-b}-\frac{y}{A-b};\quad \:A\ne \:b}[/tex]
[tex]\boxed{\bold{Eclipsed}}[/tex]