Respuesta :

Answer:

This question requires us to change the subject of a formula. This can be achieved by following the order of operations in reverse. First, isolate the terms with our variable of interest, x:

ax - bx = z - y

Then, we take x out as it is being multiplied to both a and b:

x(a - b) = z - y

Dividing (a - b) on both sides, we get:

x = (z - y) / (a - b)

Thus, the answer is x= z-y/a-b

Step-by-step explanation:

[tex]\bold{Answer}[/tex]

[tex]\boxed{\bold{x=\frac{z-y}{A-b};\quad \:A\ne \:b}}[/tex]

[tex]\bold{Explanation}[/tex]

  • [tex]\bold{Solve: \ Ax-bx+y=z}[/tex]

[tex]\bold{-------------------}[/tex]

  • [tex]\bold{Subtract \ Y \ From \ Both \ Sides}[/tex]

[tex]\bold{Ax-bx+y-y=z-y}[/tex]

  • [tex]\bold{Simplify}[/tex]

[tex]\bold{Ax-bx=z-y}[/tex]

  • [tex]\bold{Factor \ Ax-bx: \ x\left(A-b\right)}[/tex]

[tex]\bold{x\left(A-b\right)=z-y}[/tex]

  • [tex]\bold{Divide \ Both \ Sides \ By \ A-b;\quad \:A\ne \:b}[/tex]

[tex]\bold{\frac{x\left(A-b\right)}{A-b}=\frac{z}{A-b}-\frac{y}{A-b};\quad \:A\ne \:b}[/tex]

  • [tex]\bold{Simplify}[/tex]

[tex]\bold{\frac{x\left(A-b\right)}{A-b}=\frac{z}{A-b}-\frac{y}{A-b};\quad \:A\ne \:b}[/tex]

[tex]\boxed{\bold{Eclipsed}}[/tex]