Respuesta :
20 mmol.
Explanation
Let [tex]\text{HA}[/tex] denotes acetic acid and [tex]\text{A}^{-}[/tex] acetate ions. Apply the Henderson-Hasselbalch equation:
[tex]\text{pH} = \text{pK}_a - \log{\dfrac{[\text{HA}]}{[\text{A}^{-}]}}[/tex],
where
- [tex]\text{pH}[/tex] the intended pH of the buffer,
- [tex]\text{pK}_a[/tex] the pKa constant of the acetic acid, and
- [tex]\dfrac{[\text{HA}]}{[\text{A}^{-}]}[/tex] the ratio between the acetic acid and acetate ion concentrations in the solution.
[tex]\text{pH} = \text{pK}_a - \log{\dfrac{[\text{HA}]}{[\text{A}^{-}]}}\\\log{\dfrac{[\text{HA}]}{[\text{A}^{-}]}} = \text{pK}_a - \text{pH}\\\dfrac{[\text{HA}]}{[\text{A}^{-}]} = e^{\text{pK}_a -\text{pH}}[/tex].
Volume is constant. [tex]c = n \cdot V[/tex]. As a result,
[tex]\dfrac{n(\text{HA})}{n(\text{A}^{-})} = \dfrac{V\cdot[\text{HA}]}{V\cdot[\text{A}^{-}]} = \dfrac{[\text{HA}]}{[\text{A}^{-}]}=e^{\text{pK}_a-\text{pH}}[/tex].
[tex]n(\text{A}^{-}) = \dfrac{n(\text{HA})}{e^{\text{pK}_a - \text{pH}}} = \dfrac{10 \;m\text{mol}}{e^{4.74 - 5.42}}=19.7\;m\text{mol}[/tex]