Does anyone know the the answer to the second algebra question? Will give brainiest

Answer:
[tex]\sqrt[3]{x^{10} }[\tex]
Step-by-step explanation:
Exponential Rules:
[tex]x^{a} + x^{b} = x^{a + b}[/tex]
[tex]\sqrt[b]{x^{a} } =x^{\frac{a}{b} }
Original Equation:
[tex]\sqrt[3]{x^{10} } = x^{\frac{10}{3} }
Answer:
[tex]\sqrt[3]{x^{10} }[\tex]
Convert the cubed root to a power. Cubed root = [tex]\frac{1}{3}[/tex]
[tex]x^{3} x^{\frac{1}{3} }[/tex]
Convert them, so they have a common denominator - [tex]\frac{1}{3}[/tex]
[tex]\frac{3}{1} * \frac{1}{3}= \frac{9}{3}[/tex]
[tex]\frac{9}{3} + \frac{1}{3} = \frac{10}{3}[/tex]
[tex]\sqrt[3]{x^{10} }[\tex] = [tex]x^{\frac{10}{3} } [\tex]