Respuesta :

Hello from MrBillDoesMath!

Answer:

60

Discussion:

As JG bisects FJG,  

FJG     = GJH                =>

2x + 4 = 3x-9                => subtract 2x from each side

4         = 3x -2x - 9        => simplify

4         = x - 9                => add 9 to both sides

4 + 9   = x

x = 13

Now, FJH =

FJG        + GJH

(2x + 4)  + (3x-9) =

5x -5                             => substitute x 13

5(13) -5  =

65 - 5 =

60

Thank you,

MrB

Answer:

Angle FJH is 60°

Step-by-step explanation:

Given,

∠FJG = (2x+4)°

∠GJH = (3x-9)°,

Since, line segment JG bisects angle FJH,

So, by the property of angle bisector,

∠FJG = ∠GJH

⇒ 2x + 4 = 3x - 9

⇒ 2x = 3x - 9 - 4

⇒ 2x - 3x = -13

⇒ -x = -13

⇒ x = 13

Hence, ∠FJH = ∠FJG + ∠GJH

= 2∠FJG

= 2( 2×13 + 4)

= 2(26+4)

= 2(30)

= 60°