Respuesta :
Hello from MrBillDoesMath!
Answer:
60
Discussion:
As JG bisects FJG,
FJG = GJH =>
2x + 4 = 3x-9 => subtract 2x from each side
4 = 3x -2x - 9 => simplify
4 = x - 9 => add 9 to both sides
4 + 9 = x
x = 13
Now, FJH =
FJG + GJH
(2x + 4) + (3x-9) =
5x -5 => substitute x 13
5(13) -5 =
65 - 5 =
60
Thank you,
MrB
Answer:
Angle FJH is 60°
Step-by-step explanation:
Given,
∠FJG = (2x+4)°
∠GJH = (3x-9)°,
Since, line segment JG bisects angle FJH,
So, by the property of angle bisector,
∠FJG = ∠GJH
⇒ 2x + 4 = 3x - 9
⇒ 2x = 3x - 9 - 4
⇒ 2x - 3x = -13
⇒ -x = -13
⇒ x = 13
Hence, ∠FJH = ∠FJG + ∠GJH
= 2∠FJG
= 2( 2×13 + 4)
= 2(26+4)
= 2(30)
= 60°