Respuesta :

ANSWER

[tex]( \frac{f}{g} )(x ) = \frac{x - 3}{x} \: where \: \: x \ne0, - \frac{1}{2} [/tex]

EXPLANATION

Given:

[tex]f(x) = 2 {x}^{2} - 5x - 3[/tex]

and

[tex]g(x) = 2 {x}^{2} + x[/tex]

Then,

[tex]( \frac{f}{g} )(x ) = \frac{f(x)}{g(x)} [/tex]

Substitute the given functions;

[tex]( \frac{f}{g} )(x ) = \frac{2 {x}^{2} - 5x - 3}{2 {x}^{2} + x} [/tex]

Factor

[tex]( \frac{f}{g} )(x ) = \frac{2 {x}^{2} - 6x + x - 3 }{x(2x + 1)} [/tex]

[tex]( \frac{f}{g} )(x ) = \frac{2x(x - 3) +1 (x - 3)}{x(2x + 1)} [/tex]

[tex]( \frac{f}{g} )(x ) = \frac{(2x + 1)(x - 3) }{x(2x + 1)} [/tex]

Cancel the common factors.

[tex]( \frac{f}{g} )(x ) = \frac{x - 3}{x} \: where \: \: x \ne0, - \frac{1}{2} [/tex]