Please help with this question. Ignore my current answer selection, it's not correct.

Answer:
[tex]b\:>\:-\frac{1}{5}[/tex]
Step-by-step explanation:
The given inequality is
[tex]\frac{12}{25} -\frac{3b}{10}\:<\:\frac{1}{2}-\frac{b}{5}[/tex]
Multiply through by 50.
[tex]2(12) -5(3b)\:<\:25(1)-10(b)[/tex]
Simplify;
[tex]24-15b\:<\:25-10b[/tex]
Group like terms
[tex]24-25\:<\:-10b+15b[/tex]
[tex]-1\:<\:5b[/tex]
Divide both sides of the inequality by 5.
[tex]-\frac{1}{5}\:<\:b[/tex]
[tex]b\:>\:-\frac{1}{5}[/tex]
Answer:
Choice b is correct.
Step-by-step explanation:
We have given an inequality:
[tex]\frac{12}{25}-\frac{3b}{10} <\frac{1}{2}-\frac{b}{5}[/tex]
We have to solve this inequality.
[tex]\frac{12}{25}-\frac{3b}{10} <\frac{1}{2}-\frac{b}{5}[/tex]
[tex]\frac{2(12)-5(3b)}{50}<\frac{5-2b}{10}[/tex]
[tex]10(24-15b)<50(5-2b)[/tex]
240-150b < 250-100b
240-250 < -100b+150b
-10 < 50b
b > -1/5 is the answer.