Respuesta :

Answer:

[tex]b\:>\:-\frac{1}{5}[/tex]

Step-by-step explanation:

The given inequality is  

[tex]\frac{12}{25} -\frac{3b}{10}\:<\:\frac{1}{2}-\frac{b}{5}[/tex]

Multiply through by 50.

[tex]2(12) -5(3b)\:<\:25(1)-10(b)[/tex]

Simplify;

[tex]24-15b\:<\:25-10b[/tex]

Group like terms

[tex]24-25\:<\:-10b+15b[/tex]

[tex]-1\:<\:5b[/tex]

Divide both sides of the inequality by 5.

[tex]-\frac{1}{5}\:<\:b[/tex]

[tex]b\:>\:-\frac{1}{5}[/tex]

Answer:

Choice b is correct.

Step-by-step explanation:

We  have given an inequality:

[tex]\frac{12}{25}-\frac{3b}{10} <\frac{1}{2}-\frac{b}{5}[/tex]

We have to solve this inequality.

[tex]\frac{12}{25}-\frac{3b}{10} <\frac{1}{2}-\frac{b}{5}[/tex]

[tex]\frac{2(12)-5(3b)}{50}<\frac{5-2b}{10}[/tex]

[tex]10(24-15b)<50(5-2b)[/tex]

240-150b < 250-100b

240-250 < -100b+150b

-10 < 50b

b > -1/5 is the answer.