Remember to show work and explain. Use the math font.

[Logarithms, Algebra 2]

Find the inverse of each function:

[tex]1. \: y = 3 \: log_{3} \: {x}^{4} [/tex]
[tex]2. \: y = log_{3} \: {x}^{4} [/tex]
[tex]3. \: y = - log_{4} \: {x}^{3} + 7[/tex]

Respuesta :

gmany

Answer:

[tex]\large\boxed{1.\ f^{-1}(x)=\sqrt[12]{3^x}}\\\\\boxed{2.\ f^{-1}(x)=\sqrt[4]{3^x}}\\\\\ \boxed{3.\ f^{-1}(x)=\sqrt[3]{4^{7-x}}}[/tex]

Step-by-step explanation:

[tex](a^n)^m=a^{nm}\\\\\log_ab=c\iff a^c=b\\\\a^{\log_ax}=x\\\\n\log_ab=\log_ab^n\\\\\log_ab+\log_ac=\log_a(bc)\\============================\\\\1.\\y=3\log_3x^4\to y=\log_3(x^4)^3\to y=\log_3x^{12}[/tex]

[tex]2.\\y=\log_3x^4\\\\\text{Exchange x and y. Solve for y:}\\\\\log_3y^4=x\Rightarrow3^{\log_3y^4}=3^x\Rightarrow y^{4}=3^x\\\\y=\sqrt[4]{3^x}\\-------------------------[/tex]

[tex]3.\\y=-\log_4x^3+7\\\\\text{Exchange x and y. Solve for y:}\\\\-\log_4y^3+7=x\qquad\text{subtract 7 from both sides}\\\\-\log_4 y^3=x-7\qquad\text{change the signs}\\\\\log_4y^3=7-x\Rightarrow4^{\log_4y^3}=4^{7-x}\\\\y^3=4^{7-x}\Rightarrow y=\sqrt[3]{4^{7-x}}[/tex]