Respuesta :

The rule for deriving a multiplication is

[tex] (f(x)\cdot g(x))' = f'(x)g(x)+f(x)g'(x) [/tex]

Also, we can forget about the factor 4 for now, since we have

[tex] (4f(x)\cdot g(x))' = 4(f'(x)g(x)+f(x)g'(x)) [/tex]

So, we will just multiply everything by 4 at the end. Our functions are

[tex] f(x) = (x^7-9)^{12},\quad g(x) = (4x+8)^{11} [/tex]

For both derivatives we will use the rule

[tex] (f(x)^n)' = n\cdot f(x)^{n-1}\cdot f'(x) [/tex]

So, we have

[tex] f'(x) = 12\cdot(x^7-9)^{11}\cdot 7x^6,\quad g'(x) = 11\cdot(4x+8)^{10}\cdot 4 [/tex]

We can simplify those expression a little bit:

[tex] f'(x) = 84x^6(x^7-9)^{11},\quad g'(x) = 44(4x+8)^{10}[/tex]

The formula [tex] f'(x)g(x)+f(x)g'(x) [/tex] thus becomes

[tex] 84x^6(x^7-9)^{11}\cdot (4x+8)^{11} + (x^7-9)^{12} \cdot 44(4x+8)^{10} [/tex]

And so the final answer is

[tex]4(84x^6(x^7-9)^{11}\cdot (4x+8)^{11} + (x^7-9)^{12} \cdot 44(4x+8)^{10})[/tex]

If you simplify this expression by factoring common terms, you will see that the correct answer is the first one.