n a heptagon, the degree measures of the interior angles are $x, ~x, ~x-2, ~x-2,
~x + 2, ~x + 2$ and $x + 4$ degrees. What is the degree measure of the largest interior angle?

Respuesta :

Answer:

The measure of the largest interior angle is [tex]132\°[/tex]

Step-by-step explanation:

we know that

The sum of the interior angles in a polygon is equal to the formula

[tex]S=(n-2)180\°[/tex]

where

n is the number of sides of polygon

In this problem we have a heptagon

so

[tex]n=7\ sides[/tex]

substitute the value in the formula

[tex]S=(7-2)180\°=900\°[/tex]

[tex]S=x+x+(x-2)+(x-2)+(x+2)+(x+2)+(x+4)[/tex]

[tex]900=x+x+(x-2)+(x-2)+(x+2)+(x+2)+(x+4)[/tex]

Solve for x

[tex]900=7x+4[/tex]

[tex]7x=900-4[/tex]

[tex]7x=896[/tex]

[tex]x=128\°[/tex]

Find the measure of the largest interior angle

[tex](x+4)\°=(128\°+4\°)=132\°[/tex]

Answer:132°

Step-by-step explanation: