Respuesta :
[tex]\bold{Answer}[/tex]
[tex]\boxed{\bold{G \ = \ 6}}[/tex]
[tex]\bold{Explanation}[/tex]
- [tex]\bold{Solve: \ g^2-12g=-36}[/tex]
[tex]\bold{---------------------}[/tex]
- [tex]\bold{Add \ 36 \ To \ Both \ Sides}[/tex]
[tex]\bold{g^2-12g+36=-36+36}[/tex]
- [tex]\bold{Simplify}[/tex]
[tex]\bold{g^2-12g+36=0}[/tex]
- [tex]\bold{Solve \ With \ Quadratic \ Formula}[/tex]
- [tex]\bold{a=1,\:b=-12,\:c=36:\quad g_{1,\:2}=\frac{-\left(-12\right)\pm \sqrt{\left(-12\right)^2-4\cdot \:1\cdot \:36}}{2\cdot \:1}}[/tex]
[tex]\bold{\left(-12\right)^2-4\cdot \:1\cdot \:36 \ = \ 0}[/tex]
[tex]\bold{g_{1,\:2}=\frac{-\left(-12\right)\pm \sqrt{0}}{2\cdot \:1}}[/tex]
[tex]\bold{g=\frac{-\left(-12\right)}{2\cdot \:1}}[/tex]
- [tex]\bold{Simplify \ \frac{-\left(-12\right)}{2\cdot \:1} \ = \ 6}[/tex]
[tex]\bold{g=6}[/tex]
[tex]\boxed{\bold{Eclipsed}}[/tex]
Let us begin by writing the given equation:
g² - 12g = - 36
Bringing all the terms to LHS for getting a quadratic equation,
g² - 12g + 36 = 0
Splitting the middle term,
g² - 6g - 6g + 36 = 0
Taking out common factors,
g ( g - 6 ) - 6 ( g - 6 ) = 0
Taking out common factors,
( g - 6 ) ( g - 6 ) = 0
( g - 6 )² = 0
( g - 6 ) = √0
g - 6 = 0
g = 6
Hence, after solving we get, g = 6