A hemispherical wooden bowl has an internal radius of 8cm and an external radius of 9cm
Calculate the volume of the wood

Answer:
454.5 cm³
Step-by-step explanation:
The volume (V) of a sphere is calculated using formula
V= [tex]\frac{4}{3}[/tex]πr³ ← r is the radius
Thus the volume (V) of a hemisphere is
V = [tex]\frac{1}{2}[/tex] × [tex]\frac{4}{3}[/tex]πr³ = [tex]\frac{2}{3}[/tex]πr³
[tex]V_{wood}[/tex] = [tex]V_{external}[/tex] - [tex]V_{internal}[/tex]
= [tex]\frac{2}{3}[/tex]π × 9³ - [tex]\frac{2}{3}[/tex]π × 8³
= [tex]\frac{2}{3}[/tex]π (9³ - 8³)
= [tex]\frac{2}{3}[/tex]π (729 - 512 )
= [tex]\frac{2}{3}[/tex]π × 217 ≈ 454.5 cm³
Answer:
[tex]\large\boxed{V=\dfrac{434\pi}{3}\ cm^3}[/tex]
Step-by-step explanation:
We have a hemisphere with a radius 9 cm with a hemisphere cut out with radius 8cm.
Calculate a volume of a larger hemisphere and subtract from it a volume of smaller hemisphere.
The formula of a volume of a sphere:
[tex]V_s=\dfrac{4}{3}\pi R^3[/tex]
R - radius
Therefore the formula of a volume of a hemisphere:
[tex]V_{hs}=\dfrac{1}{2}\cdot\dfrac{4}{3}\pi R^3=\dfrac{2}{3}\pi R^3[/tex]
The volume of the larger hemisphere:
[tex]V_l=\dfrac{2}{3}\pi(9^3)=\dfrac{2}{3}\pi(729)=(2)(\pi)(243)=486\pi\ cm^3[/tex]
The volume of the smaller hemisphere:
[tex]V_s=\dfrac{2}{3}\pi(8^3)=\dfrac{2}{3}\pi(512)=\dfrac{1024\pi}{3}\ cm^3[/tex]
The volume of wood:
[tex]V=V_l-V_s[/tex]
Substitute:
[tex]V=486\pi-\dfac{1024\pi}{3}=\dfrac{1458\pi}{3}-\dfrac{1024\pi}{3}=\dfrac{434\pi}{3}\ cm^3[/tex]