Respuesta :

Answer:

x ≈ 6.2

Step-by-step explanation:

To find x using trig. ratios we require to find the hypotenuse of the right triangle on the left.

From the right triangle on the right we can calculate the hypotenuse.

sin53° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{opp}{30}[/tex]

Multiply both sides by 30

opp = 30 × sin53° ≈ 24

Thus the length of the hypotenuse of the triangle on the left is 24, hence

cos75° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{x}{24}[/tex]

Multiply both sides by 24

x = 24 × cos75° ≈ 6.2

Answer:

6.20 units to the nearest hundredth.

Step-by-step explanation:

WE apply the trigonometry of a right angled triangle.

Consider the larger triangle where we can find the length of the side opposite to the 53 degree angle:

sin 53 = y / 30    (where y = length of the opposite side mentioned.)

y  =  30 sin 53 =  23.96 units.

Now consider the  smaller triangle where side y is the hypotenuse:

cos 75 = x / y

cos 75  = x / 23.96

x = 23.96 cos 75

= 6.20 units.

Otras preguntas