Respuesta :
Answer:
The volume of the water in the fishbowl is equal to
[tex](682\frac{2}{3})\pi\ in^{3}[/tex] or [tex]2,144.6\ in^{3}[/tex]
Step-by-step explanation:
we know that
The volume of the sphere (a fishbowl) is equal to
[tex]V=\frac{4}{3}\pi r^{3}[/tex]
In this problem we have
[tex]r=16/2=8\ in[/tex] ----> the radius is half the diameter
substitute
[tex]V=\frac{4}{3}\pi (8^{3})=\frac{2,048}{3}\pi\ in^{3}[/tex]
convert to mixed number
[tex]\frac{2,048}{3}\pi\ in^{3}=\pi (\frac{2,046}{3}+\frac{2}{3})=(682\frac{2}{3})\pi\ in^{3}[/tex]
[tex](3.14156)*(682\frac{2}{3})=2,144.6\ in^{3}[/tex]
Answer:
2,144.66 in³
Step-by-step explanation:
∵ The volume of a sphere,
[tex]V=\frac{4}{3}\pi (r)^3[/tex]
Where,
r = radius of the sphere,
If Diameter of a sphere = 16 inches,
Then the radius of the sphere, r = [tex]\frac{16}{2}[/tex] = 8 inches
So, the volume of the sphere,
[tex]V=\frac{4}{3}\pi (8)^3[/tex]
[tex]=\frac{4}{3}\times 512[/tex]
[tex]=2144.66058485[/tex]
[tex]\approx 2144.66\text{ square inches }[/tex]
∵ the fishbowl shaped like a sphere having diameter 16 in is filled with water.
Thus, the volume of the water in the fish bowl = volume of sphere having diameter 16 inches
= 2,144.66 in³