Respuesta :

Answer:

Option D. [tex]<R=62\°[/tex]

Step-by-step explanation:

step 1

Find the measure of angle F

we know that

In an inscribed quadrilateral, the opposite angles are supplementary

so

[tex]<Q+<F=180\°[/tex]

substitute the value of <Q

[tex]99\°+<F=180\°[/tex]

[tex]<F=180\°-99\°=81\°[/tex]

step 2

Find the measure of arc PQ

we know that

The inscribed angle measures half that of the arc comprising

so

[tex]<F=\frac{1}{2}(arc\ PQ+arc\ RQ)[/tex]

substitute values

[tex]81\°=\frac{1}{2}(arc\ PQ+92\°)[/tex]

[tex]162\°=(arc\ PQ+92\°)[/tex]

[tex]arc\ PQ=162\°-92\°=70\°[/tex]

step 3

Find the measure of angle R

we know that

The inscribed angle measures half that of the arc comprising

so

[tex]<R=\frac{1}{2}(arc\ FP+arc\ PQ)[/tex]

substitute values

[tex]<R=\frac{1}{2}(54\°+70\°)[/tex]

[tex]<R=\frac{1}{2}(124\°)[/tex]

[tex]<R=62\°[/tex]