Respuesta :
Answer:
Solution:
{-5, 3}
Step-by-step explanation:
3x^2+6x=45
3x^2+6x - 45 = 0
(3x - 9)(x + 5) = 0
3x - 9 = 0; x = 3
x + 5 = 0
x = -5
Solution:
{-5, 3}
[tex]\bold{Answer}[/tex]
[tex]\boxed{\bold{X \ = \ 3, \ X \ = \ -5}}[/tex]
[tex]\bold{Explanation}[/tex]
- [tex]\bold{Solve \ For \ Solutions: \ 3x^2+6x=4}[/tex]
[tex]\bold{------------------------}[/tex]
- [tex]\bold{Subtract \ 45 \ From \ Both \ Sides}[/tex]
[tex]\bold{3x^2+6x-45=45-45}[/tex]
- [tex]\bold{Simplify}[/tex]
[tex]\bold{3x^2+6x-45=0}[/tex]
- [tex]\bold{Solve \ With \ Quadratic \ Formula}[/tex]
[tex]\bold{For\:a\:quadratic\:equation\:of\:the\:form\: ax^2+bx+c=0:the\:solutions\:are:\:}[/tex]
[tex]\bold{x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}}[/tex]
- [tex]\bold{For \ a=3,\:b=6,\:c=-45:\quad x_{1,\:2}=\frac{-6\pm \sqrt{6^2-4\cdot \:3\left(-45\right)}}{2\cdot \:3}}[/tex]
[tex]\bold{\frac{-6+\sqrt{6^2-4\cdot \:3\left(-45\right)}}{2\cdot \:3}: \ 3}[/tex]
[tex]\bold{\frac{-6-\sqrt{6^2-4\cdot \:3\left(-45\right)}}{2\cdot \:3}: \ -5}[/tex]
- [tex]\bold{Solutions}[/tex]
[tex]\bold{x=3,\:x=-5}[/tex]
[tex]\boxed{\bold{Eclipsed}}[/tex]