Respuesta :

Answer:

Solution:

{-5, 3}

Step-by-step explanation:

3x^2+6x=45

3x^2+6x - 45 = 0

(3x - 9)(x + 5) = 0

3x - 9 = 0; x = 3

x + 5 = 0

x = -5

Solution:

{-5, 3}

[tex]\bold{Answer}[/tex]

[tex]\boxed{\bold{X \ = \ 3, \ X \ = \ -5}}[/tex]

[tex]\bold{Explanation}[/tex]

  • [tex]\bold{Solve \ For \ Solutions: \ 3x^2+6x=4}[/tex]

[tex]\bold{------------------------}[/tex]

  • [tex]\bold{Subtract \ 45 \ From \ Both \ Sides}[/tex]

[tex]\bold{3x^2+6x-45=45-45}[/tex]

  • [tex]\bold{Simplify}[/tex]

[tex]\bold{3x^2+6x-45=0}[/tex]

  • [tex]\bold{Solve \ With \ Quadratic \ Formula}[/tex]

[tex]\bold{For\:a\:quadratic\:equation\:of\:the\:form\: ax^2+bx+c=0:the\:solutions\:are:\:}[/tex]

[tex]\bold{x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}}[/tex]

  • [tex]\bold{For \ a=3,\:b=6,\:c=-45:\quad x_{1,\:2}=\frac{-6\pm \sqrt{6^2-4\cdot \:3\left(-45\right)}}{2\cdot \:3}}[/tex]

[tex]\bold{\frac{-6+\sqrt{6^2-4\cdot \:3\left(-45\right)}}{2\cdot \:3}: \ 3}[/tex]

[tex]\bold{\frac{-6-\sqrt{6^2-4\cdot \:3\left(-45\right)}}{2\cdot \:3}: \ -5}[/tex]

  • [tex]\bold{Solutions}[/tex]

[tex]\bold{x=3,\:x=-5}[/tex]

[tex]\boxed{\bold{Eclipsed}}[/tex]