Respuesta :

Answer:

= 6n(n^3 - 4n^2 + 3)

Step-by-step explanation:

6n^4 – 24n^3 + 18n

= 6n(n^3 - 4n^2 + 3)

Answer:

The factored form is : [tex]6n(n-1)(n^{2}-3n-3)[/tex]

Step-by-step explanation:

The given expression is :

[tex]6n^{4} -24n^{3} +18n[/tex]

Taking out 6n out as 6n is common for all, we get

[tex]6n(n^{3} -4n^{2} +3)[/tex]

Now lets factor [tex]n^{3} -4n^{2} +3[/tex] by hit and trial method.

Putting n=1

Now, by hit and trial method, we put n=1,

p(n)= [tex]1^{3} -4(1)^{2} +3[/tex]

=> p(1) = [tex]1-4+3=0[/tex]

So, (n-1) is a factor.

Now, dividing [tex]n^{3} -4n^{2} +3[/tex] by n-1 we get [tex]n^{2}-3n-3[/tex]

Therefore, the factored form is = [tex]6n(n-1)(n^{2}-3n-3)[/tex]