Respuesta :
Answer:
= 6n(n^3 - 4n^2 + 3)
Step-by-step explanation:
6n^4 – 24n^3 + 18n
= 6n(n^3 - 4n^2 + 3)
Answer:
The factored form is : [tex]6n(n-1)(n^{2}-3n-3)[/tex]
Step-by-step explanation:
The given expression is :
[tex]6n^{4} -24n^{3} +18n[/tex]
Taking out 6n out as 6n is common for all, we get
[tex]6n(n^{3} -4n^{2} +3)[/tex]
Now lets factor [tex]n^{3} -4n^{2} +3[/tex] by hit and trial method.
Putting n=1
Now, by hit and trial method, we put n=1,
p(n)= [tex]1^{3} -4(1)^{2} +3[/tex]
=> p(1) = [tex]1-4+3=0[/tex]
So, (n-1) is a factor.
Now, dividing [tex]n^{3} -4n^{2} +3[/tex] by n-1 we get [tex]n^{2}-3n-3[/tex]
Therefore, the factored form is = [tex]6n(n-1)(n^{2}-3n-3)[/tex]