Respuesta :

Answer:

(f+g)(x) = x^3 + 3x^2 - 46.

Step-by-step explanation:

(f+g)(x) means to add the like terms in each function together.

So (f+g)(x) = x^2 - 36 + x^3 + 2x^2 - 10 = x^3 + 3x^2 - 46

So (f+g)(x) = x^3 + 3x^2 - 46.

Answer:

[tex](f+g)(x)=x^{3}+3x^{2} -46[/tex]

Step-by-step explanation:

The given functions are

[tex]f(x)=x^{2} -36\\g(x)=x^{3}+2x^{2} -10[/tex]

Now, the operation [tex](f+g)(x)[/tex] indicates that we need to sum these functions. As polynomials, we can sum terms with equal grade. so,

[tex](f+g)(x)=x^{3} +(2+1)x^{2} -10-36=x^{3}+3x^{2} -46[/tex]

Therefore, the answer is [tex](f+g)(x)=x^{3}+3x^{2} -46[/tex]