What is (f+g)(x)?
f(x)=x^2−36
g(x)=x^3+2x^2−10
Enter your answer in the box.

Answer:
(f+g)(x) = x^3 + 3x^2 - 46.
Step-by-step explanation:
(f+g)(x) means to add the like terms in each function together.
So (f+g)(x) = x^2 - 36 + x^3 + 2x^2 - 10 = x^3 + 3x^2 - 46
So (f+g)(x) = x^3 + 3x^2 - 46.
Answer:
[tex](f+g)(x)=x^{3}+3x^{2} -46[/tex]
Step-by-step explanation:
The given functions are
[tex]f(x)=x^{2} -36\\g(x)=x^{3}+2x^{2} -10[/tex]
Now, the operation [tex](f+g)(x)[/tex] indicates that we need to sum these functions. As polynomials, we can sum terms with equal grade. so,
[tex](f+g)(x)=x^{3} +(2+1)x^{2} -10-36=x^{3}+3x^{2} -46[/tex]
Therefore, the answer is [tex](f+g)(x)=x^{3}+3x^{2} -46[/tex]