Figure ABCD is a trapezoid find the Value of x

Answer:
The value of x is 4
Step-by-step explanation:
we know that
in this problem
[tex]\frac{1}{2}(2x+(3x+10))=15[/tex]
solve for x
[tex]\frac{1}{2}(5x+10)=15[/tex]
[tex](5x+10)=30[/tex]
[tex]5x=30-10[/tex]
[tex]x=20/5=4[/tex]
Answer:
The value of [tex]x[/tex] is 4.
Step-by-step explanation:
Figure [tex]ABCD[/tex] is a trapezoid, in which [tex]AD[/tex] and [tex]BC[/tex] are parallel sides.
Given that, [tex]AD= 3x+10[/tex] and [tex]BC=2x[/tex]
Now, the length of the median [tex]= \frac{1}{2}(AD+BC)[/tex] , which is given as [tex]15.[/tex]
So, the equation will be......
[tex]\frac{1}{2}[(3x+10)+2x]=15\\ \\ \frac{1}{2}(5x+10)=15\\ \\ 5x+10=2(15)\\ \\ 5x+10=30\\ \\ 5x=30-10\\ \\ 5x=20\\ \\ x=\frac{20}{5}=4[/tex]
So, the value of [tex]x[/tex] is 4.