Respuesta :
Answer:
[tex]\dfrac{-5-\sqrt{21}}{2},\ \dfrac{-5+\sqrt{21}}{2}[/tex]
Step-by-step explanation:
For the equation [tex](x+4)^2-3(x+4)-3=0[/tex] use the substitution [tex]u=x+4.[/tex] Then the equation will take look
[tex]u^2-3u-3=0.[/tex]
Solve this quadratic equation:
[tex]D=(-3)^2-4\cdot 1\cdot (-3)=9+12=21,\\ \\u_{1,2}=\dfrac{-(-3)\pm \sqrt{21}}{2}=\dfrac{3\pm\sqrt{21}}{2}.[/tex]
Thus,
[tex]x+4=\dfrac{3-\sqrt{21}}{2}\text{ or }x+4=\dfrac{3+\sqrt{21}}{2},\\ \\x_1=\dfrac{3-\sqrt{21}}{2}-4=\dfrac{-5-\sqrt{21}}{2}\text{ or }x_2=\dfrac{3+\sqrt{21}}{2}-4=\dfrac{-5+\sqrt{21}}{2}.[/tex]
Answer:
x = (-5+√21) /2 or x = (-5-√21) /2
Step-by-step explanation:
We have given the equation :
(x + 4)²– 3(x + 4) – 3=0
Put u = (x + 4) in the given equation we get,
u² -3u -3 = 0
Using quadratic equation we get,
u = ( -(-3)±√(-3)²-4(1)(-3) ) /2(1)
u = (3±√21) /2
Then replace u by (x+4) we get,
(x+4) = (3±√21) /2
x+4 = (3±√21) /2
x = (3(3±√21) /2 +(-4)
x = (-5±√21) /2
x = (-5+√21) /2 or x = (-5-√21) /2 is the solution.