Find the lateral area for the regular pyramid.
L. A. =


Answer:
≈ 12.65 Square units
Step-by-step explanation:
lateral area of a pyramid may be given by the formula;
L. A = l√((w/2)² + h²) + √((l/2)² +h²)
length = 2 , width = 2 and height = 3
= 2 √((2/2)² + 3²) + 2 √((2/2)² + 3²)
= 2 √10 + 2√10
= 4√10
= 12.649
≈ 12.65 Square units
Answer: [tex]4\sqrt{13}[/tex]
Step-by-step explanation:
The formula for calculate the lateral area of regular pyramid is:
[tex]LA=\frac{1}{2}pl[/tex]
Where p is the perimeter of the base and l is the slant height.
Calculate the slant height with Pythagorean Theorem:
[tex]l=\sqrt{3^2+2^2}=\sqrt{13}[/tex]
The perimeter is:
[tex]p=4*2=8[/tex]
Then the result is:
[tex]LA=\frac{1}{2}8*\sqrt{13}=4\sqrt{13}[/tex]