Respuesta :

Answer:

≈ 12.65 Square units

Step-by-step explanation:

lateral area of a pyramid may be given by the formula;

L. A = l√((w/2)² + h²) + √((l/2)² +h²)

length = 2 , width = 2 and height = 3

  = 2 √((2/2)² + 3²) + 2 √((2/2)² + 3²)

 = 2 √10 + 2√10

 = 4√10

 =  12.649

≈ 12.65 Square units

Answer: [tex]4\sqrt{13}[/tex]

Step-by-step explanation:

The formula for calculate the lateral area of regular pyramid is:

[tex]LA=\frac{1}{2}pl[/tex]

Where p is the perimeter of the base and l is the slant height.

Calculate the slant height with Pythagorean Theorem:

[tex]l=\sqrt{3^2+2^2}=\sqrt{13}[/tex]

The perimeter is:

[tex]p=4*2=8[/tex]

Then the result is:

[tex]LA=\frac{1}{2}8*\sqrt{13}=4\sqrt{13}[/tex]