Respuesta :
Answer:
For (fg)(x)
(fg) (x) = 4x^4 - 8x^3 -11x^2 -3x
With no restrictions on the x
Step-by-step explanation:
To find (fg) (x) = f(x) . g(x)
We need to multiply f(x) with g(x)
(fg) (x) = (2x^2 -5x -3) * (2x^2 + x)
fg(x) = 4x^4 + 2x^3 - 10x^3 - 5x^2 -6x^2 -3x
fg(x) = 4x^4 - 8x^3 -11x^2 -3x
Answer:
(fg)(x) = [tex]4x^{4}-8x^{3}-11x^{2}-3x[/tex] is the answer.
Step-by-step explanation:
It is given f(x) = 2x² - 5x -3 and g(x) = 2x² + x
Then we have to find (fg)(x)
As we know (fg)(x) = f(x).g(x)
By putting the values of f(x) and g(x)
(fg)(x) = (2x² - 5x - 3)(2x²+x)
= 2x²(2x²+x) - 5x(2x² + x) - 3(2x² + x)
= [tex]4x^{4}+2x^{3}-10x^{3}-5x^{2}-6x^{2}-3x[/tex]
= [tex]4x^{4}-8x^{3}-11x^{2}-3x[/tex]
So the value of (fg)(x) = [tex]4x^{4}-8x^{3}-11x^{2}-3x[/tex] is the answer.