The first side of a triangle is 3 inches shorter than the second side, and 2 inches longer than the third side. How long is each side, if the triangle has a perimeter of 28 inches?

Respuesta :

Answer:

the length of the first side of the triangle is [tex]\frac{28}{3}\ in[/tex]

the length of the second side of the triangle is [tex]\frac{37}{3}\ in[/tex]

the length of the third side of the triangle is [tex]\frac{19}{3}\ in[/tex]

Step-by-step explanation:

Let

x-----> the length of the first side of a triangle

y----> the length of the second side of a triangle

z---> the length of the third side of a triangle

we know that

[tex]x=y-3[/tex]

[tex]y=x+3[/tex] -----> equation A

[tex]x=z+3[/tex]

[tex]z=x-3[/tex]  -----> equation B

The perimeter of the triangle is equal to

[tex]P=x+y+z[/tex]

[tex]P=28\ in[/tex]

so

[tex]28=x+y+z[/tex] -----> equation C

substitute equation A and equation B in equation C

[tex]28=x+(x+3)+(x-3)[/tex]

solve for x

[tex]28=3x[/tex]

[tex]x=\frac{28}{3}\ in[/tex]

Find the value of each side

the first side of a triangle is x

[tex]x=\frac{28}{3}\ in[/tex]

the second side of a triangle is y

[tex]y=\frac{28}{3}+3=\frac{37}{3}\ in[/tex]

the third side of a triangle is z

[tex]z=\frac{28}{3}-3=\frac{19}{3}\ in[/tex]