Respuesta :

Answer:  [tex]sinx=\frac{b}{c}[/tex]

Step-by-step explanation:

By definition you have that:

[tex]sin\alpha=\frac{opposite}{hypotenuse}[/tex]

Based on the figure attached in the problem you have that:

[tex]\alpha=x\\opposite=b\\hypotenuse=c[/tex]

Therefore, you must substitute the above into [tex]sin\alpha=\frac{opposite}{hypotenuse}[/tex]

Then, the answer is:

[tex]sinx=\frac{b}{c}[/tex]

Hello!

The answer is: [tex]sin(x)=\frac{b}{c}[/tex]

Why?

Since it's a right triangle, we can determine the Sine of the angle "x" using the following formula:

[tex]sin(x)=\frac{b}{c}[/tex]

Where:

[tex]b=opposite\\a=hypotenuse[/tex]

Also, we can determine the cosine and the tangent of the same angle "x" using the following formulas:

[tex]cos(x)=\frac{a}{c} \\tan(x)=\frac{b}{a}[/tex]

Where:

[tex]a=hypotenuse\\b=opposite\\c=adjacent[/tex]

Have a nice day!